%0 Journal Article
%T Photodegradation of p-Nitrochlorbenzene (p-NCB) Using Nanometer-Sized ZnO Particles Prepared by Reactive Evaporation Method
PHOTODEGRADATION OF p-NITROCHLORBENZENE (p-NCB) USING NANOMETER-SIZED ZnO PARTICLES PREPARED BY REACTIVE EVAPORATION METHOD
%A AAASaleh
%A XJZhai
%A YCZhai
%A YFu
%A MMElomella
%A
A.A.A.Saleh
%A X.J.Zhai
%A Y.C.Zhai
%A Y.Fu
%A M.M.Elomella
%J 金属学报(英文版)
%D 2004
%I
%X Photocatalytic degradations of p-nitrochlorbenzene (p-NCB) with distilled water were investigated with ZnO crystals (catalyst) of 70nm in diameter under UV irradiation. The suitable experimental conditions are determined as: ZnO 0.25g, pH 7, p-NCB concentration 30mg/L. These variables in terms of the degradation rate have been discussed, which was defined as the rate of the initial degradation to the final degrada- tion of p-NCB. When all of the experimental degradation rate values are plotted as a function of irradiation time, all of the points appeared on a single line for wide range of p-NCB degradations. On the basis of these results, it has been concluded that at lower ZnO catalyst amount, much of the light is transmitted through the slurry in the con- tainer beaker, while at higher catalyst amount, all the incident photons are observed by the slurry. Degradation rates of p-NCB were found to decrease with increasing solution pH. It has been concluded that the maximum degradation rate values of p- NCB under principally the same experimental conditions mentioned above are 97.4%, 98.8% and 95.5% at 100min respectively. The results suggest that the photocatalytic degradation is initiated by an oxidation of the p-NCB through ZnO surface-adsorbed hydroxyl radicals. Absorption spectra are recorded using spectrophotometer before and after UV-irradiation in the wavelength range 200-400nm at room temperature. It is found that the variation of irradiation time over the range 20-100min resulted in change in the form of the spectrum linear absorption and a higher maximum value will be obtained at longer irradiation time.
%K reactive evaporation method
%K nano-ZnO particles
%K pnitrochlorbenzene (p-NCB
%K ultraviolet light
%K spectrophotometer
%K catalyst
纳米氧化锌
%K 光降解
%K p-NCB
%K 催化剂
%K 反应蒸发
%K 制备
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=AB188D3B70B071C57EB64E395D864ECE&jid=C19B08D052F5FD8445F4BB80A1A5D7BF&aid=323B0EC9FD88CD7B1B658FFE12E60FC4&yid=D0E58B75BFD8E51C&vid=BCA2697F357F2001&iid=0B39A22176CE99FB&sid=7EBE588F611589FC&eid=847B14427F4BF76A&journal_id=1006-7191&journal_name=金属学报(英文版)&referenced_num=0&reference_num=19