%0 Journal Article %T Subspace clustering method for high dimensional data stream
一种适用于高维数据流的子空间聚类方法 %A YAN Xiao-long %A SHEN Hong %A
沈鸿 %A 颜晓龙 %J 计算机应用 %D 2007 %I %X Inspired by the FP algorithm used in mining frequent patterns and the idea used in CLIQUE which is a classical method for clustering static data,a new data structure named dense grid-tree(DG-tree for short) was proposed to record the synopsis of the data streams for clustering.Then the clustering problem was transformed to the problem of constructing a DG-tree and searching for dense grid cells in the DG-tree.With the help of DG-tree,the subspace containing clusters was found.Experimental results show that this method has good cluster quality. %K data mining %K high dimension %K data streams %K subspace %K clustering %K FP-tree
数据挖掘 %K 高维 %K 数据流 %K 子空间 %K 聚类 %K FP树 %K 数据流 %K 空间聚类方法 %K data %K stream %K high %K method %K clustering %K 伸缩性 %K 聚类效果 %K 实验 %K 过程 %K 网格单元 %K 高密 %K 搜索树 %K 利用 %K 构造 %K 转化 %K 聚类问题 %K 高维空间 %K 子空间 %K 存在 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=831E194C147C78FAAFCC50BC7ADD1732&aid=14E16CBD274305128F9074A6CA68EFF3&yid=A732AF04DDA03BB3&vid=DB817633AA4F79B9&iid=DF92D298D3FF1E6E&sid=BCF7BCA77FA8F9BA&eid=FE397BCF5D340F6F&journal_id=1001-9081&journal_name=计算机应用&referenced_num=1&reference_num=13