%0 Journal Article %T Study on audio classification based on 1-state HMM
基于单状态HMM的音频分类方法研究 %A ZHENG Ji-ming %A LI Rui-xian %A PU Xing-chengInstitute of applied mathematics %A Chongqing University of Posts %A Telecommunications %A Chongqing %A China %A College of Computer Science %A Technology %A
郑继明 %A 李瑞仙 %A 蒲兴成 %J 计算机应用 %D 2009 %I %X Hidden markov model (HMM),based on statistical signal, plays an important role in content-based audio retrieval system. According to the characteristic that pays more attention to the type than to content of audio classification, 1-state HMM was used for audio classification, which overcame the shortcoming of assumption of multi-state HMM model's initial state probabilities and state transition probabilities in the course of model-initializing. The experiment shows the method for audio classification based on 1-state HMM could decrease the misrecognition effectively and increase the accuracy of audio classification. %K Hidden Markov Model (HMM) %K audio classification %K 1-state
隐马尔可夫模型 %K 音频分类 %K 单状态 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=831E194C147C78FAAFCC50BC7ADD1732&aid=F30E4F8CE4D0EEC20587384DE11810CE&yid=DE12191FBD62783C&vid=771469D9D58C34FF&iid=0B39A22176CE99FB&sid=5A735990D5DE8BF4&eid=0BD4FAD4A90498AB&journal_id=1001-9081&journal_name=计算机应用&referenced_num=0&reference_num=11