%0 Journal Article %T Analysis and study on latent semantic index retrieval model
隐含语义索引模型的分析与研究 %A WANG Chun-hong %A ZHANG Min %A
王春红 %A 张敏 %J 计算机应用 %D 2007 %I %X Latent Semantic Index (LSI) retrieval model was designed by expanding Vector Space Model. Based on the profound research of Vector Space Model, LSI mapped documents and terms vectors into a lower dimensional space by Singular Value Decomposition (SVD), so that the inherent vagueness associated with a retrieval process based on keyword sets was considerably reduced and semantic association among the documents was highlighted consequently. Theoretic analyses show that LSI can improve retrieval performance significantly. %K Vector Space Model %K Latent semantic index %K information retrieval
向量空间模型 %K 隐含语义索引 %K 信息检索 %K 隐含语义索引模型 %K 分析证明 %K 研究 %K retrieval %K model %K index %K semantic %K latent %K study %K 检索效果 %K 表达能力 %K 语义内容 %K 理论 %K 模糊度 %K 消减 %K 低维空间 %K 向量投影 %K 文档 %K 奇异值分解 %K 设计 %K 扩展 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=831E194C147C78FAAFCC50BC7ADD1732&aid=14E16CBD2743051279B50A98BA1FCC2C&yid=A732AF04DDA03BB3&vid=DB817633AA4F79B9&iid=94C357A881DFC066&sid=2F8F471CEC23CD85&eid=9A3A88A3A0B8496C&journal_id=1001-9081&journal_name=计算机应用&referenced_num=3&reference_num=6