%0 Journal Article
%T RVM analog circuit fault diagnosis based on Fisher criterion function
基于Fisher准则函数的相关向量机模拟电路故障诊断*
%A YANG Ying-tao
%A WANG Yue-gang
%A DENG Wei-qiang
%A
杨颖涛
%A 王跃钢
%A 邓卫强
%J 计算机应用研究
%D 2011
%I
%X Abstract: In order to reducing fuzzy group and overlap of analogous circuit between fault and feature, this article ,first, establishes auto-adapted estimating approach of best cluster number based on Fisher criterion function, fuzzy nuclear cluster is used to select best diagnosable fault component set, and then proposes an analog circuit fault diagnosis model based on relevant vector machine (RVM) from the sparse Bayesian theory, RVM can infer the discriminant function under the Bayesian framework. Moreover, it can obtaining posterior probability of each classification, thus can judge the degree of confidence of classification result, assist diagnosis decision-making. The result indicate that RVM need less RVs than SVs with comparative default accuracy, sparser and generalizing, it is an effective method for analog circuits fault diagnosis.
%K fuzzy kernel clustering
%K relevant vector machine
%K sparse Bayes
%K analog circuit
%K fault diagnosis
模糊核聚类
%K 相关向量机
%K 稀疏贝叶斯
%K 模拟电路
%K 故障诊断
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=A9D9BE08CDC44144BE8B5685705D3AED&aid=8AB53BDA742F5C0C09F00F5D15E54ACB&yid=9377ED8094509821&vid=D3E34374A0D77D7F&iid=B31275AF3241DB2D&sid=FA7F82B640E17733&eid=5B4FE8EC29FFFACE&journal_id=1001-3695&journal_name=计算机应用研究&referenced_num=0&reference_num=10