%0 Journal Article
%T Research of initialization of subspace clustering algorithm in binary data
二元数据子空间聚类算法的初始化研究*
%A XIA Ying
%A LU Ning
%A FENG Jiang-fan
%A
夏英
%A 鲁宁
%A 丰江帆
%J 计算机应用研究
%D 2009
%I
%X Aiming at the characteristic of high-dimensionality and sparseness in binary data set,proposes the finite mixtures of Bernoulli distributions model for finding projected clusters fast.EM algorithm is the important method of iterative parameters,and the degree of good or bad with EM algorithm lies on initial parameters.As far as the finite mixtures of Bernoulli distributions model,there have been lots of researches about it.However,in EM algorithm,the initial parameters affect the clustering performance directly.Therefore,this paper introduced Binning method and computed parameters through changing the comparability measurement between dates and selection style about core-point,in order to reduce the dependence of the clustering for initial parameters.Experiment demonstrates the algorithm is efficient and accurate.
%K subspace clustering
%K binary data
%K the finite mixtures of Bernoulli distributions model
%K EM algorithm
子空间聚类
%K 二元数据
%K 有限混合伯努利模型
%K EM算法
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=A9D9BE08CDC44144BE8B5685705D3AED&aid=B1BE56932FDFDB3F64604F29C4A6A086&yid=DE12191FBD62783C&vid=96C778EE049EE47D&iid=CA4FD0336C81A37A&sid=F4B561950EE1D31A&eid=2A3781E88AB1776F&journal_id=1001-3695&journal_name=计算机应用研究&referenced_num=1&reference_num=10