%0 Journal Article %T Review of Outlier Detection
离群数据挖掘综述 %A HUANG Hong-yu %A LIN Jia-xiang %A CHEN Chong-cheng %A FAN Ming-hui %A
黄洪宇 %A 林甲祥 %A 陈崇成 %A 樊明辉 %J 计算机应用研究 %D 2006 %I %X This paper compared and analyzed major outlier detection algorithms. Their features were summarized to help users choose, study and improve algorithm for outlier detection. Attention was paid to high-dimensional data and spatial data because of their unique data structures as better and efficient algorithm is needed to deal with these types of data. %K Data Mining %K Outliers Detection %K Exception %K High-Dimension Outliers
数据挖掘 %K 离群检测 %K 异常 %K 高维离群 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=A9D9BE08CDC44144BE8B5685705D3AED&aid=7B151F9F4DE5E8C8&yid=37904DC365DD7266&vid=EA389574707BDED3&iid=5D311CA918CA9A03&sid=5D311CA918CA9A03&eid=FC0714F8D2EB605D&journal_id=1001-3695&journal_name=计算机应用研究&referenced_num=14&reference_num=67