%0 Journal Article %T Stream weight optimization method of multi stream HMMs
多数据流隐马尔可夫模型的流权值优化方法* %A QIN Wei %A WEI Gang %A
秦伟 %A 韦岗 %J 计算机应用研究 %D 2007 %I %X This paper proposed a novel stream-weight optimization method based on the likelihood-ration maximization criterion and the N-best algorithm. The proposed method had advantages that not only computational complexity was significantly reduced, but also audio-visual speech recognition performance was significantly improved by using a small optimization data set. Further experimental results demonstrate that the audio-visual speech recognition system provides significant enhancement of robustness in noisy environments. %K audio-visual speech recognition %K likelihood-ratio maximization criterion %K stream weight
双模语音识别 %K 似然比最大化准则 %K 流权值 %K 多数据流 %K 隐马尔可夫模型 %K 权值 %K 优化方法 %K HMMs %K method %K of %K 识别率 %K 语音识别系统 %K 视频 %K 合音 %K 方法优化 %K 利用 %K 信噪比 %K 条件 %K 量优化 %K 实验 %K 算法 %K 准则 %K 大化 %K 似然比 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=A9D9BE08CDC44144BE8B5685705D3AED&aid=C793235A4E87B8F6EEE9EF08DB53D074&yid=A732AF04DDA03BB3&vid=B91E8C6D6FE990DB&iid=708DD6B15D2464E8&sid=8C83C265AD318E34&eid=331211A5F5616413&journal_id=1001-3695&journal_name=计算机应用研究&referenced_num=0&reference_num=12