%0 Journal Article %T Analysis and Application of Multiple-Precision Computation and Round-off Error for Nonlinear Dynamical Systems %A WANG Pengfei %A HUANG Gang %A WANG Zaizhi %A
WANG Pengfei %A HUANG Gang %A WANG Zaizhi %J 大气科学进展 %D 2006 %I %X This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demonstrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression. %K multiple-precision numerical calculation %K round-off error %K nonlinear dynamical system
非线性动力系统 %K 数值计算 %K 气候 %K 误差 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=E62459D214FD64A3C8082E4ED1ABABED5711027BBBDDD35B&cid=28A2F569B2458C17&jid=5434AFBF6CB6E7E8D67733B541F211C7&aid=9B8DED7491641C85AFEC44F6FC6AF439&yid=37904DC365DD7266&vid=EA389574707BDED3&iid=94C357A881DFC066&sid=3D8AB54CA690066A&eid=34A7AB0452E6AF23&journal_id=0256-1530&journal_name=大气科学进展&referenced_num=3&reference_num=15