%0 Journal Article
%T Analysis and Application of Multiple-Precision Computation and Round-off Error for Nonlinear Dynamical Systems
%A WANG Pengfei
%A HUANG Gang
%A WANG Zaizhi
%A
WANG Pengfei
%A HUANG Gang
%A WANG Zaizhi
%J 大气科学进展
%D 2006
%I
%X This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demonstrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression.
%K multiple-precision numerical calculation
%K round-off error
%K nonlinear dynamical system
非线性动力系统
%K 数值计算
%K 气候
%K 误差
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=E62459D214FD64A3C8082E4ED1ABABED5711027BBBDDD35B&cid=28A2F569B2458C17&jid=5434AFBF6CB6E7E8D67733B541F211C7&aid=9B8DED7491641C85AFEC44F6FC6AF439&yid=37904DC365DD7266&vid=EA389574707BDED3&iid=94C357A881DFC066&sid=3D8AB54CA690066A&eid=34A7AB0452E6AF23&journal_id=0256-1530&journal_name=大气科学进展&referenced_num=3&reference_num=15