%0 Journal Article %T SAR IMAGE CHANGE DETECTION METHODS BASED ON GLCM TEXTURE FEATURES
基于灰度共生矩阵纹理特征的SAR影像变化检测方法研究 %A Han Jing %A Deng Kazhong %A Li Beicheng %A
韩晶 %A 邓喀中 %A 李北城 %J 大地测量与地球动力学 %D 2012 %I %X The authors found difference images based on the contrast can stand out changed information better using texture features extraction of SAR images based on gray level co-ocurrence matrix,to analyze the principle of the GLCM,feature vectors and the characteristic parameters determined,logarithmic ratio operator constructed difference images,we made the difference images based on the contrast as the base of change detection.As the images in accordance with the Gaussian mixture model,so we estimate the parameters of the Gaussian mixture model with expectation maximum(EM) algorithm,and then use Bayesian minimum error rate to extract change information,finally compare it with the change detection results based on the pixel grayscale value.The test proved that the change detection method based on GLCM texture features has the lower false alarm rate,the lower missing rate,the smaller overall error and better detection effect. %K SAR image %K gray level co-ocurrence matrix %K expectation maximum(EM)algorithm %K Bayesian minimum error rate %K change information extraction
SAR影像 %K 灰度共生矩阵 %K 期望最大算法 %K 贝叶斯最小错误率 %K 变化信息提取 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=E62459D214FD64A3C8082E4ED1ABABED5711027BBBDDD35B&cid=DA72A78627FE64EAA572951EA05D274A&jid=73A1A428591E600EF664B596512A2997&aid=21CB0722CA48644FDC92CB6188709E65&yid=99E9153A83D4CB11&vid=9971A5E270697F23&iid=E158A972A605785F&sid=BB0EA31DB1B01173&eid=10F298ED9F164662&journal_id=1671-5942&journal_name=大地测量与地球动力学&referenced_num=0&reference_num=0