%0 Journal Article %T SVR with Adaptive Error Penalization
自适应误差惩罚支撑向量回归机 %A Chen Xiao-feng %A Wang Shi-tong %A Cao Su-qun %A
陈晓峰 %A 王士同 %A 曹苏群 %J 电子与信息学报 %D 2008 %I %X A novel support vector regression method AEPSVR is proposed in this paper. First, an approximate regression function is obtained using -SVR method, and then a new adaptive error penalization function is introduced to enhance the robust performance of SVR such that a robust support vector regression is derived. Because the proposed AEPSVR here is based on -SVR, so various optimization methods for SVR can be used. Experimental results show that the proposed AEPSVR can reduce the affect of outliers, and have the very good generalization capability. %K Support Vector Regression (SVR) %K Outlier %K Adaptive Error Penalization (AEP)
支撑向量回归 %K 离群点 %K 自适应误差惩罚 %K 自适应 %K 误差 %K 惩罚函数 %K 支撑向量回归机 %K Penalization %K Error %K 泛化性能 %K 影响 %K 离群点 %K 实验 %K 优化算法 %K 求解 %K 应用 %K 方法 %K 鲁棒 %K 迭代 %K 回归函数 %K 近似 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=1319827C0C74AAE8D654BEA21B7F54D3&jid=EFC0377B03BD8D0EF4BBB548AC5F739A&aid=69527733A53A82BE61B7F8559F82090D&yid=67289AFF6305E306&vid=340AC2BF8E7AB4FD&iid=0B39A22176CE99FB&sid=4C2B9916B58305BE&eid=0918129209B14F3E&journal_id=1009-5896&journal_name=电子与信息学报&referenced_num=0&reference_num=12