%0 Journal Article %T Wavelet Markov Random Field Based on Context and Hidden Class Label for SAR Image Segmentation
基于上下文和隐类属的小波域马尔可夫随机场SAR图像分割 %A Zhang Qiang %A Wu Yan %A
张 强 %A 吴 艳 %J 电子与信息学报 %D 2008 %I %X Because of the property that Synthetic Aperture Radar (SAR) images include plenty of multiplicative speckle noise, an effective image segmentation algorithm is proposed based on the wavelet hidden-class-label Markov Random Field (MRF) to suppress the affect of speckle. To consider the clustering and persistence of wavelet, the hidden-class-label MRF is extended to the wavelet domain with a new wavelet model for segmented image named hidden-class-label mixture heavy-tailed model, and interscale transition probability is estimated with improved context, then a new Maximum A Posteriori (MAP) classification is obtained. The experimental results show that the method suppresses the affect of noise effectively to achieve exact and robust segmentation result. %K SAR image segmentation %K Multiscale segmentation %K Wavelet mixture heavy-tailed model %K Hidden-class-label MRF %K Context model
SAR图像分割 %K 多尺度分割 %K 小波域混合长拖尾模型 %K 隐类属马尔可夫随机场 %K 上下文模型 %K 基于上下文 %K 类属 %K 小波域模型 %K 马尔可夫随机场 %K 图像分割算法 %K SAR %K Image %K Segmentation %K Label %K Class %K Hidden %K Context %K Based %K Markov %K Random %K Field %K 仿真结果 %K 鲁棒性能 %K 公式 %K Maximum %K 最大后验 %K 转移概率 %K 尺度 %K 估计 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=1319827C0C74AAE8D654BEA21B7F54D3&jid=EFC0377B03BD8D0EF4BBB548AC5F739A&aid=ED67FF580D09EB97F1DEFDB0CD167CF3&yid=67289AFF6305E306&vid=340AC2BF8E7AB4FD&iid=CA4FD0336C81A37A&sid=CC0ECB9C52F1B85F&eid=1B64850025D0BBBE&journal_id=1009-5896&journal_name=电子与信息学报&referenced_num=1&reference_num=9