%0 Journal Article
%T ICA-Based Dimensionality Reduction and Compression of Hyperspectral Images
基于独立成分分析的高光谱图像数据降维及压缩
%A Feng Yan
%A He Ming-yi
%A Song Jiang-hong
%A Wei Jiang
%A
冯 燕
%A 何明一
%A 宋江红
%A 魏 江
%J 电子与信息学报
%D 2007
%I
%X This paper proposes a dimensionality reduction and compression method of hyperspectral images based on Independent Component Analysis(ICA) for hyperspectral image analysis.At first hyperspectral features are extracted using ICA and dimensionality reduction is accomplished.Then,dimensionality reduction images are compressed by the predictive code and adaptive arithmetic code.The experimental results by using 220 bands and 64 bands hyperspectral data show that the method achieved higher compression ratio,more strong analysis capability and lower peak signal-to-noise ratio than dimensionality reduction based on Principal Components Analysis(PCA).
%K Hyperspectral image compression
%K Independent Component Analysis(ICA)
%K Principal Components Analysis(PCA)
%K Dimensionality reduction
%K Classification
高光谱图像压缩
%K 独立成分分析
%K 主成分分析
%K 降维
%K 分类
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=1319827C0C74AAE8D654BEA21B7F54D3&jid=EFC0377B03BD8D0EF4BBB548AC5F739A&aid=455BE28CB26271E460E7634811C61D59&yid=A732AF04DDA03BB3&vid=771469D9D58C34FF&iid=59906B3B2830C2C5&sid=47BC2B59C2090B24&eid=AD7290F467CD0DF6&journal_id=1009-5896&journal_name=电子与信息学报&referenced_num=1&reference_num=11