%0 Journal Article
%T Reduced Order Model for Solving Linear Inverse Problem
线性逆问题求解的多尺度降阶模型
%A Wen Cheng-lin
%A Zhou Fu-na
%A Yang Guo-sheng
%A
文成林
%A 周福娜
%A 杨国胜
%J 电子与信息学报
%D 2004
%I
%X Based on relative error covariance matrix (RECM) information, a reduced-order model is proposed for solving linear inverse problem. The reduced-order model turns the high order model into an approximate lower order model, which can efficiently alleviate the computational load of the inversion algorithm. Thus, the computational complexity difficulty arose in the solution of linear inverse problem can be conquered, and this in turn promotes the implementation of the inversion algorithm. In addition, the reduced-order model can improve the estimate precision of those points that provide significant information to the reconstruction of the object.
%K Reduced order model
%K Inverse problem
%K Multi-scale inversion algorithm
%K RECM
降阶模型
%K 逆问题
%K 多尺度逆算法
%K 相对误差协方差矩阵
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=1319827C0C74AAE8D654BEA21B7F54D3&jid=EFC0377B03BD8D0EF4BBB548AC5F739A&aid=0DBAEEFF0E0FE793&yid=D0E58B75BFD8E51C&vid=96C778EE049EE47D&iid=59906B3B2830C2C5&sid=3A61856D91CF5877&eid=B2F4AE6815C8FC11&journal_id=1009-5896&journal_name=电子与信息学报&referenced_num=1&reference_num=8