%0 Journal Article %T A CLASS OF APPROACHES FOR BLIND SOURCE SEPARATION BASED ON MULTIVARIATE DENSITY ESTIMATION
一类基于多变量密度估计的盲源分离方法 %A He Zhenya %A Yang Luxi %A Liu Ju %A Lu Ziyi %A He Chen %A
何振亚 %A 杨绿溪 %A 刘琚 %A 鲁子奕 %A 何晨 %J 电子与信息学报 %D 2001 %I %X A class of learning algorithms is drived for blind separation of independent source signals in this paper. These algorithms are based on minimizing a contrast function defined in terms of the Kullback-Leibler distance. By utilizing the technique of multivariate density esti-mation, two types of separating algorithms are obtained. Simulations illustrate the effectiveness of the algorithms. %K Blind sources separation %K Multivariate density estimation %K Mutual information %K Statistical independent
盲源分离 %K 多变量密度估计 %K 信号分析 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=1319827C0C74AAE8D654BEA21B7F54D3&jid=EFC0377B03BD8D0EF4BBB548AC5F739A&aid=8538E2C85C83CE42&yid=14E7EF987E4155E6&vid=EA389574707BDED3&iid=E158A972A605785F&sid=3622B70F9C54A9CC&eid=A5111BA190517959&journal_id=1009-5896&journal_name=电子与信息学报&referenced_num=0&reference_num=10