%0 Journal Article %T Discrete variational principle and first integrals for Lagrange--Maxwell mechanico-electrical systems
Discrete variational principle and first integrals for Lagrange-Maxwell mechanico-electrical systems %A Fu Jing-Li %A Dai Gui-Dong %A Salvador Jiménez %A Tang Yi-Fa %A
傅景礼 %A 戴桂冬 %A 萨尔瓦多·希梅尼斯 %A 唐贻发 %J 中国物理 B %D 2007 %I %X This paper presents a discrete variational principle and a method to build first-integrals for finite dimensional Lagrange--Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. The discrete variational principle and the corresponding Euler--Lagrange equations are derived from a discrete action associated to these systems. The first-integrals are obtained by introducing the infinitesimal transformation with respect to the generalized coordinates and electric quantities of the systems. This work also extends discrete Noether symmetries to mechanico-electrical dynamical systems. A practical example is presented to illustrate the results. %K discrete %K variational principle %K first integral %K mechanico-electrical systems
拉格朗日-麦克斯韦机电系统 %K 离散 %K 变分原理 %K 初积分 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=CD8D6A6897B9334F09D8D1648C376FB4&aid=FF458534E88FE56F4B0075976F637C34&yid=A732AF04DDA03BB3&vid=7801E6FC5AE9020C&iid=38B194292C032A66&sid=18F040DBCB74FFF9&eid=52B9DFFFCC2EB041&journal_id=1009-1963&journal_name=中国物理&referenced_num=0&reference_num=32