%0 Journal Article
%T Lie symmetries and non-Noether conserved quantities for Hamiltonian canonical equations
%A Fu Jing-Li
%A Chen Li-Qun
%A Xie Feng-Ping
%A
傅景礼
%A 陈立群
%A 谢凤萍
%J 中国物理 B
%D 2004
%I
%X This paper focuses on studying Lie symmetries and non-Noether conserved quantities of Hamiltonian dynamical systems in phase space. Based on the infinitesimal transformations with respect to the generalized coordinates and generalized momenta, we obtain the determining equations and structure equation of the Lie symmetry for Hamiltonian dynamical systems. This work extends the research of non-Noether conserved quantity for Hamilton canonical equations, and leads directly to a new type of non-Noether conserved quantities of the systems. Finally, an example is given to illustrate these results.
%K Hamiltonian system
%K Lie symmetry
%K non-Noether conserved quantity
%K Lie groups
哈密顿系统
%K 李对称
%K 非Noether守恒量
%K 李群
%K 拉格朗日系统
%K 数学物理方法
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=CD8D6A6897B9334F09D8D1648C376FB4&aid=8FD74CB15987B9CC3B0A41DA0177FA5B&yid=D0E58B75BFD8E51C&vid=FC0714F8D2EB605D&iid=F3090AE9B60B7ED1&sid=371466E036DA0FD9&eid=B0D0FAC45E96482A&journal_id=1009-1963&journal_name=中国物理&referenced_num=2&reference_num=31