%0 Journal Article %T New Canards Bursting and Canards Periodic-Chaotic Sequence
%A YOOER Chi-Feng %A XU Jian-Xue %A ZHANG Xin-Hua %A
%J 中国物理快报 %D 2009 %I %X A trajectory following the repelling branch of an equilibrium or a periodic orbit is called a canards solution. Using a continuation method, we find a new type of canards bursting which manifests itself in an alternation between the oscillation phase following attracting the limit cycle branch and resting phase following a repelling fixed point branch in a reduced leech neuron model. Via periodic-chaotic alternating of infinite times, the number of windings within a canards bursting can approach infinity at a Gavrilov-Shilnikov homoclinic tangency bifurcation of a simple saddle limit cycle %K 05 %K 45 %K Gg %K 05 %K 45 %K Pq %K 07 %K 05 %K Mh
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=E27DA92E19FE279A273627875A70D74D&aid=6EF141D26647F548F7C7F09A51D93012&yid=DE12191FBD62783C&vid=96C778EE049EE47D&iid=DF92D298D3FF1E6E&journal_id=0256-307X&journal_name=中国物理快报&referenced_num=0&reference_num=0