%0 Journal Article
%T New Canards Bursting and Canards Periodic-Chaotic Sequence
%A YOOER Chi-Feng
%A XU Jian-Xue
%A ZHANG Xin-Hua
%A
%J 中国物理快报
%D 2009
%I
%X A trajectory following the repelling branch of an equilibrium or a periodic orbit is called a canards solution. Using a continuation method, we find a new type of canards bursting which manifests itself in an alternation between the oscillation phase following attracting the limit cycle branch and resting phase following a repelling fixed point branch in a reduced leech neuron model. Via periodic-chaotic alternating of infinite times, the number of windings within a canards bursting can approach infinity at a Gavrilov-Shilnikov homoclinic tangency bifurcation of a simple saddle limit cycle
%K 05
%K 45
%K Gg
%K 05
%K 45
%K Pq
%K 07
%K 05
%K Mh
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=E27DA92E19FE279A273627875A70D74D&aid=6EF141D26647F548F7C7F09A51D93012&yid=DE12191FBD62783C&vid=96C778EE049EE47D&iid=DF92D298D3FF1E6E&journal_id=0256-307X&journal_name=中国物理快报&referenced_num=0&reference_num=0