%0 Journal Article
%T Walks on Weighted Networks
%A WU An-Cai
%A XU Xin-Jian
%A WU Zhi-Xi
%A WANG Ying-Hai
%A
吴安彩
%A 许新建
%A 吴枝喜
%A 汪映海
%J 中国物理快报
%D 2007
%I
%X We investigate the dynamics of random walks on weighted networks. Assuming that the edge weight and the node strength are used as local information by a random walker. Two kinds of walks, weight-dependent walk and strength-dependent walk, are studied. Exact expressions for stationary distribution and average return time are derived and confirmed by computer simulations. The distribution of average return time and the mean-square displacement are calculated for two walks on the Barrat--Barthelemy--Vespignani (BBV) networks. It is found that a weight-dependent walker can arrive at a new territory more easily than a strength-dependent one.
%K 89
%K 75
%K Hc
%K 05
%K 40
%K Fb
%K 89
%K 75
%K Fb
随机通道
%K 加权网络
%K 强度
%K 计算机模拟
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=E27DA92E19FE279A273627875A70D74D&aid=A6F1F92187EC7BB8EE5F04CF699B8C0C&yid=A732AF04DDA03BB3&vid=B91E8C6D6FE990DB&iid=0B39A22176CE99FB&sid=52B9DFFFCC2EB041&eid=28B3EB92D5061EA4&journal_id=0256-307X&journal_name=中国物理快报&referenced_num=0&reference_num=0