%0 Journal Article %T Differential System''s Nonlinear Behaviour of Real Nonlinear Dynamical Systems
Differential System's Nonlinear Behaviour of Real Nonlinear Dynamical Systems %A YANG Zheng-Ling %A WANG Wei-Wei %A YIN Zhen-Xing %A ZHANG Jun %A CHEN Xi %A
杨正瓴 %A 王渭巍 %A 尹振兴 %A 张军 %A 陈曦 %J 中国物理快报 %D 2007 %I %X Chaos attractor behaviour is usually preserved if the four basic arithmetic operations, i.e. addition, subtraction, multiplication, division, or their compound, are applied. First-order differential systems of one-dimensional real discrete dynamical systems and nonautonomous real continuous-time dynamical systems are also dynamical systems and their Lyapunov exponents are kept, if they are twice differentiable. These two conclusions are shown here by the definitions of dynamical system and Lyapunov exponent. Numerical simulations support our analytical results. The conclusions can apply to higher order differential systems if their corresponding order differentials exist. %K 05 %K 45 %K Ac %K 05 %K 45 %K Tp %K 89 %K 75 %K Fb
微分系统 %K 非线性动态系统 %K 混沌 %K 吸引子 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=47EA7CFDDEBB28E0&jid=E27DA92E19FE279A273627875A70D74D&aid=A6F1F92187EC7BB83256DDFE5589AA80&yid=A732AF04DDA03BB3&vid=B91E8C6D6FE990DB&iid=94C357A881DFC066&sid=75AB4EF959CC4ED9&eid=B9196C90508452FE&journal_id=0256-307X&journal_name=中国物理快报&referenced_num=0&reference_num=0