%0 Journal Article
%T A Novel PNN Classification for Speaker Identification
一种新的用于说话人辨认的PNN分类器的研究
%A WANG Cheng-Ru
%A WANG Jin-Jia
%A LIAN Qiu-Sheng
%A
王成儒
%A 王金甲
%A 练秋生
%J 自动化学报
%D 2004
%I
%X A novel a PNN model is proposed for class conditional density estimation based on the mixtures of PNN of shared pattern layers and PNN of separated pattern layers. Each class not only has a set of pattern layers belonging to itself, but also has several pattern layers shared for all class, where "shared" means that each kernel may contribute to the estimation of the conditional density of all classes. The training of the novel model utilizes the maximum likelihood criterion and an effective EM algorithms to adjust model parameters .s developed. These results of the closed-set text-independent speaker identification experiments indicate the proposed model and algorithms improve identification accuracy.
%K Probabilistic neural networks
%K maximum likelihood
%K expectation-maximization
%K speaker identification
概率神经网络
%K 最大似然
%K 期望最大化
%K 说话人辨认
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=E76622685B64B2AA896A7F777B64EB3A&aid=CAFE62D27A927974&yid=D0E58B75BFD8E51C&vid=340AC2BF8E7AB4FD&iid=38B194292C032A66&sid=23410D0BDB501DF5&eid=9EF602EA28138BEA&journal_id=0254-4156&journal_name=自动化学报&referenced_num=0&reference_num=10