%0 Journal Article %T An Improved Mumford-Shah Model and Its Applications to Image Processing with the Piecewise Constant Level Set Method
改进的Mumford-Shah模型及其基于逐段常数水平集方法在图像处理中的应用 %A SONG Jin-Ping %A LI Shuai-Jie %A
宋锦萍 %A 李率杰 %J 自动化学报 %D 2007 %I %X For quick segmentation and denoising,the classical Mumford-Shah(MS)model needs to enhance the penalization term, i.e.to increase the penalization parameter,which leads to gradual disappearance of objects.In this paper,we propose an improved Mumford-Shah(IMS)model to avoid the phenomenon,and adopt the piecewise constant level set method(PCLSM)and the gradient descent method to solve the minimization problem.Numerical experiments are given to show the efficiency and advantages of the new model and the algorithms. %K Segmentation %K denoising %K Mumford-Shah model %K level set %K piecewise constant level set method(PCLSM)
分段持续水平集方法 %K 分割 %K 降噪 %K 经典MS模型 %K 最小化 %K 算法 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=E76622685B64B2AA896A7F777B64EB3A&aid=7138E0D53DB296DA26245D34C8E0EEB4&yid=A732AF04DDA03BB3&vid=27746BCEEE58E9DC&iid=59906B3B2830C2C5&sid=BE411C407DAF4824&eid=D45398EB9ED445AA&journal_id=0254-4156&journal_name=自动化学报&referenced_num=1&reference_num=13