%0 Journal Article %T Time-optimal Trajectories for a Car-like Robot
车型机器人的时间最优轨迹 %A WANG Hui-Fang %A CHEN Yang-Zhou %A
王慧芳 %A 陈阳舟 %J 自动化学报 %D 2008 %I %X This paper provides a new geometric method for achieving the sufficient family of the time-optimal trajectories to connect any two configurations of the robot in a 3-dimensional manifold based on the geometric optimal control theory.We provide a new perspective for analyzing this special type of nonlinear problems.Based on the structural characteristics of the switching functions and their derivatives from the Pontryagin's minimum principle(PMP)and the Lie algebra,we build a special coordinate system and introduce a new vector.We discover the one-to-one mapping between the rotation trajectory of this new vector and the optimal control trajectory.Furthermore,we define a switching vector that denotes the position and rotation direction of this vector,and reach a conclusion that the specified initial and final switching vectors can uniquely determine an optimal trajectory.In addition,it is the first time a condition that can be used directly for selecting a time-optimal trajectory is provided. %K Geometric optimal control theory %K robotics %K time-optimal trajectory %K Pontryagin's minimum principle(PMP) %K Lie algebra
Geometric %K optimal %K control %K theory %K robotics %K time-optimal %K trajectory %K Pontryagin's %K minimum %K principle %K (PMP) %K Liealgebra %K 车型机器人 %K 时间 %K 最优轨迹 %K Robot %K time %K condition %K used %K provided %K addition %K reach %K initial %K final %K vectors %K determine %K optimal %K trajectory %K position %K direction %K discover %K mapping %K rotation %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=E76622685B64B2AA896A7F777B64EB3A&aid=49B2E3BDC5F2DEAFAC3527F0DD899BC1&yid=67289AFF6305E306&vid=339D79302DF62549&iid=E158A972A605785F&sid=A48DE16C07AAAB06&eid=30F3EEEA29E34EE7&journal_id=0254-4156&journal_name=自动化学报&referenced_num=0&reference_num=25