%0 Journal Article %T Soft Sensor Modeling Based on a Modified k-Nearest Neighbor Regression Algorithm
基于改进k-最近邻回归算法的软测量建模 %A YE Tao %A ZHU Xue-Feng %A LI Xiang-Yang %A SHI Bu-Hai %A
叶涛 %A 朱学峰 %A 李向阳 %A 史步海 %J 自动化学报 %D 2007 %I %X Recently,machine learning regression algorithms are widely applied to soft sensor modeling for complex industrial processes.The k-nearest neighbor(kNN)algorithm is a popular learning algorithm for solving regression problems.However,the traditional kNN algorithm has low efficiency and ignores the fea- ture weights in distance computing.Using a quadratic distance definition and a data set editing algorithm,we have modified the traditional kNN regression algorithm.The modified algorithm is applied to soft sensor modeling and some useful conclusions are reached. %K k-nearest neighbor algorithm %K quadratic distance %K soft sensing %K pulp Kappa number
k-最近邻算法 %K 二次型距离 %K 软测量 %K 纸浆Kappa值 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=E76622685B64B2AA896A7F777B64EB3A&aid=B5947D32AEB89467&yid=A732AF04DDA03BB3&vid=27746BCEEE58E9DC&iid=9CF7A0430CBB2DFD&sid=112A5CAF55F27887&eid=E6D5A068841F33F3&journal_id=0254-4156&journal_name=自动化学报&referenced_num=0&reference_num=11