%0 Journal Article %T Feature Mapping Based on PCA
采用主成分分析的特征映射 %A GUO Wu %A DAI Li-Rong %A WANG Ren-Hua %A
郭武 %A 戴礼荣 %A 王仁华 %J 自动化学报 %D 2008 %I %X In text-independent speaker verification research,feature mapping can reduce the bias by the channel.In this paper,the subspace of the channel is estimated by the generalized principal component analysis,then the bias of the channel is subtracted from the acoustic feature.The proposed algorithm requires labeled data in the training process but does not need the channel detection in the feature mapping process.In the NIST 2006 SRE lconv4w-lconv4w corpus, the equal error rate (EER) of the proposed system can be down by 19 % against the baseline Gaussian mixture model (GMM) system. %K Speaker verification %K Gaussian mixture model (GMM) %K supervector %K Mel frequency cepstral coefficients (MFCC)
说话人确认 %K 混合高斯模型 %K 超矢量 %K 梅尔刻度式倒谱参数 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=E76622685B64B2AA896A7F777B64EB3A&aid=F458BF9F0EFFBD5A5227BE5089FCC95D&yid=67289AFF6305E306&vid=339D79302DF62549&iid=5D311CA918CA9A03&sid=BE05E2A2B7E55AA9&eid=D698D0190A84C2BD&journal_id=0254-4156&journal_name=自动化学报&referenced_num=0&reference_num=11