%0 Journal Article %T Identification of Separable Variable Nonlinear Dynamical System Based on SVMs
基于支持向量机的可分离非线性动态系统辨识 %A ZHANG Li %A XI Yu-Geng %A
张莉 %A 席裕庚 %J 自动化学报 %D 2005 %I %X In this paper,for the case that the state variables can be separated from the control variables in a nonlinear dynamic system,an improved regression estimation algorithm based on SVMs is presented and then applied to nonlinear system identification.This kind of learning machines includes two nonlinear functions whose variables are the state and the control ones,respectively,and they are used to identify the two nonlinear functions in the separable-variable nonlinear dynamic system.The simulation results validate the efficiency of our method. %K System identification %K support vector machine(SVM) %K regression estimation %K kernel function
系统辨识 %K 支持向量机 %K 回归估计 %K 核函数 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=E76622685B64B2AA896A7F777B64EB3A&aid=C0593E0B88120AE5&yid=2DD7160C83D0ACED&vid=4AD960B5AD2D111A&iid=B31275AF3241DB2D&sid=78AF84DBB4041008&eid=CF2C3194F1B66D28&journal_id=0254-4156&journal_name=自动化学报&referenced_num=3&reference_num=5