%0 Journal Article
%T Enzyme activity as affected by surfactant APG in dairy manure compost in bioreactor
堆肥反应器中表面活性剂APG对牛粪堆肥酶活性的影响
%A GU Wen-Jie
%A ZHANG Fa-Bao
%A XU Pei-Zhi
%A XIE Kai-Zhi
%A TANG Shuan-Hu
%A CHEN Jian-Sheng
%A YANG Shao-Hai
%A
顾文杰
%A 张发宝
%A 徐培智
%A 解开治
%A 唐拴虎
%A 陈建生
%A 杨少海
%J 中国生态农业学报
%D 2010
%I
%X Using compost bioreactors with dairy manure and mushroom residues as feed-stocks, we studied microbial population and enzyme activity as affected by surfactant APG in a 28-day composting process under controlled aerobic condition. APG was added at rate of 100 mg·kg-1 (amended treatment on dry-weight basis) with 0.00 APG (non-amended treatment) as CK. Results show that APG addition does not inhibit microbial population in terms of total bacteria, fungi and actinomycete (P>0.05). APG addition accelerates temperature increase, with prolonged periods of high temperatures. It, however, does not affect catalase activity at approximately 1.17 mmol·g-1 for both treatments after 28 days of composting. Urease activity under APG addition and CK reaches its peaks of respectively 32.15 mg(NH3-N)·g-1·24h-1 and 30.17 mg(NH3-N)·g-1·24h-1 after 2 days. There is no significant difference between the 2 treatments and both treatments respectively hit the lowests of 0.81 mg(NH3-N)·g-1·24h-1 and 0.38 mg(NH3-N)·g-1·24h-1 on the 7th day. APG addition significantly enhances invertase and cellulase activity. Invertase activity peaks on day 3 at 18.15 mg(glucose)·g-1·24h-1 for APG treatment and 11.77 mg(glucose)·g-1·24h-1 for CK (P<0.05), and on day 21 at 24.09 mg(glucose)·g-1·24h-1 and 20.71 mg(glucose)·g-1·24h-1 for CK respectively (P<0.05). Cellulase activity reaches its peaks of 58.77 mg·min-1 for APG treatment and 30.62 mg·min-1 for CK (P<0.05) on day 3. The above results suggest that APG addition enhances organic matter decomposition and therefore potentially shortens decomposition time.
%K Dairy manure
%K Aerobic composting
%K Surfactant APG
%K Microbe
%K Enzyme activity
%K Compost bioreactor
牛粪
%K 好氧堆肥
%K 表面活性剂APG
%K 微生物
%K 酶活性
%K 堆肥反应器
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=03F54A49DE00578AA0E5DDF5BC021AA7&cid=1A8B5357F0EF07B8&jid=AB3ABF502E2E1FF39F0E3B80164C9031&aid=47EF2BF7F82E93EFC60CB70628FD58D0&yid=140ECF96957D60B2&vid=13553B2D12F347E8&iid=38B194292C032A66&sid=826ED638BDB6F0D0&eid=D33D61F62E4C72A7&journal_id=1671-3990&journal_name=中国生态农业学报&referenced_num=0&reference_num=36