%0 Journal Article %T Improved support vector machine and classification for remotely sensed data
改进的P-SVM支持向量机与遥感数据分类 %A ZHANG Rui %A MA Jian-wen %A
张 睿 %A 马建文 %J 遥感学报 %D 2009 %I %X In this paper, the P-SVM algorithm was introduced into multi-spectral/high-spatial resolution remotely sensed data classification and it is applied to classification of ASTER satellite data and ADS40 aerial digital data. The experiments indicate that the P-SVM is at least competitive with the standard SVM algorithm in classification accuracy of remotely sensed data and the time needed is less. %K SVM %K P-SVM %K multi-spectral/high-spatial resolution remotely sensed data %K classification
SVM %K P-SVM %K 多光谱/高分辨率遥感数据 %K 遥感数据分类 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=E62459D214FD64A3C8082E4ED1ABABED5711027BBBDDD35B&cid=A41A70F4AB56AB1B&jid=F926358B31AC94511E4382C083F7683C&aid=A8799F5B31C7F974C52A400E11274978&yid=DE12191FBD62783C&vid=FC0714F8D2EB605D&iid=38B194292C032A66&sid=A48DE16C07AAAB06&eid=D0E8F9CBDBE0070C&journal_id=1007-4619&journal_name=遥感学报&referenced_num=0&reference_num=36