%0 Journal Article %T Ergodicity analysis based on system clustering for temperature variation process of Beijing
基于系统聚类的北京气温变化过程遍历特征分析 %A WANG Hong-rui %A LIN Xin %A LIU Qiong %A FENG Qi-lei %A LIU Chang-ming %A
王红瑞 %A 林欣 %A 刘琼 %A 冯启磊 %A 刘昌明 %J 系统工程理论与实践 %D 2010 %I %X The ergodicity analysis of temperature variation is significant for medium and long-term weather forecast.The ergodicity of the month-highest temperature,month- lowest temperature,and month- average temperature in Beijing was discussed in this study.Firstly,each kind of temperature was clustered applying the systematic clustering method by taking a month as the individual.Based on this,autocorrelogram was used to eliminate the periodicity series and ADF(Advanced Dickey & Fuller) was employed to test the sta... %K Beijing temperature %K ergodicity %K systematic clustering %K stationary test %K neural networks
遍历性 %K 系统聚类 %K 平稳性检验 %K 神经网络 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=01BA20E8BA813E1908F3698710BBFEFEE816345F465FEBA5&cid=962324E222C1AC1D&jid=1D057D9E7CAD6BEE9FA97306E08E48D3&aid=E88C8766800F645A9D8B2901043E2FF9&yid=140ECF96957D60B2&vid=340AC2BF8E7AB4FD&iid=0B39A22176CE99FB&sid=23104246A5FCFCEF&eid=1E41DF9426604740&journal_id=1000-6788&journal_name=系统工程理论与实践&referenced_num=0&reference_num=26