%0 Journal Article
%T Stock Market Multi-step Forecasting Based on Fuzzy Neural Networks and R/S Analysis
基于模糊神经网络和R/S分析的股票市场多步预测
%A YANG Yi-wen{
%A }
%A LIU Gui-zhong
%A CAI Yu
%A
杨一文
%A 刘贵忠
%A 蔡毓
%J 系统工程理论与实践
%D 2003
%I
%X Input space of nonlinear model is partitioned into several fuzzy subspaces. Within each subspace, a local linear model is used to model the nonlinear model. The global model output is obtained by interpolating the local model outputs. Adaptive network fuzzy inference system (ANFIS), based on Sugeno fuzzy inference model, is one way of neural network realization of the fuzzy modeling based on the ideal of local linear modeling above. The results of R/S analysis show that Shanghai stock market has long-term memory, thus possible to predict. This study combines ANFIS and FMH to implement multi-step prediction of Shanghai Stock Exchange index.
%K neural fuzzy modeling
%K R/S analysis
%K multi-step prediction
神经模糊建模
%K R/S分析
%K 多步预测
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=01BA20E8BA813E1908F3698710BBFEFEE816345F465FEBA5&cid=962324E222C1AC1D&jid=1D057D9E7CAD6BEE9FA97306E08E48D3&aid=0882ED5D8E9A96C8&yid=D43C4A19B2EE3C0A&vid=EA389574707BDED3&iid=38B194292C032A66&sid=09ABD5535D9B6D45&eid=228A710F49B6CE58&journal_id=1000-6788&journal_name=系统工程理论与实践&referenced_num=5&reference_num=6