%0 Journal Article %T Study on Fuzzy Optimization Based on Genetic Algorithm
基于遗传算法的模糊优化研究 %A JIN Chao-guang %A LIN Yan %A JI Zhuo-shang %A
金朝光 %A 林焰 %A 纪卓尚 %J 系统工程理论与实践 %D 2003 %I %X Using fuzzy numbers ranking this paper presents a method based on genetic algorithm to solving fully fuzzy linear and nonlinear optimization problems that the constrain conditions, coefficients and optimum variables are fuzzy numbers. In the method the variables are encoded as triangular fuzzy numbers, i.e., a variable is represented by three real numbers which are a,b and c of a triangular fuzzy number respectively. It can be concluded that the method is efficient and practicable by means of fully fuzzy linear and nonlinear optimization examples. %K fuzzy number %K fuzzy optimization %K genetic algorithm
模糊数 %K 模糊优化 %K 遗传算法 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=01BA20E8BA813E1908F3698710BBFEFEE816345F465FEBA5&cid=962324E222C1AC1D&jid=1D057D9E7CAD6BEE9FA97306E08E48D3&aid=3DB2D08AC576A4FD&yid=D43C4A19B2EE3C0A&vid=EA389574707BDED3&iid=E158A972A605785F&sid=F24949CFDB502409&eid=4DB1E72614E68564&journal_id=1000-6788&journal_name=系统工程理论与实践&referenced_num=4&reference_num=12