%0 Journal Article %T Recursive Subspace Identification Based on Principal ComponentAnalysis
基于主成份分析的递推子空间辨识 %A Jiang Yueping %A Fang Haitao %A
姜月萍 %A 方海涛 %J 系统科学与数学 %D 2007 %I %X The recursive subspace identification problem of MIMO state space models is considered. In the case of the existence of output-measurement noise, a new recursive algorithm based on SA-PCA (Stochastic Approximation-Principal Component Analysis) is proposed to estimate a basis of the extended observability matrix. Besides, a recursive algorithm based on RLS (Recursive Least-Squares) is proposed to estimate the system matrices. Finally, a numerical simulation is given to show the validity of the algorithm. %K State-space models %K recursive subspace identification %K principal component analysis %K recursive least squares
状态空间模型 %K 递推子空间辨识 %K 主成份分析 %K 递推最小二乘 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=C78B754ECF6307B8&yid=A732AF04DDA03BB3&vid=DB817633AA4F79B9&iid=38B194292C032A66&sid=117BC32987199759&eid=8ACD9060100C26F1&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=18