%0 Journal Article %T Positive Periodic Solution of a Class of Nonlinear Second-OrderDifferential Equations
一类非线性二阶常微分方程的正周期解 %A YAO Qingliu %A
姚庆六 %J 系统科学与数学 %D 2008 %I %X The positive solutions are considered for the nonlinear second-order ordinary differential equation $u^{\prime \prime }(t)=f(t,u(t))$ with the boundary condition $u(0)=u(2\pi),~u^{\prime}(0)=u^{\prime}(2\pi)$. Because there is not Green function for the equation, the usual methods are invalid. By applying suitable transform technique and fixed point theorem on cone, the existence of $n$ positive solutions is proved for the equation, where $n$ is an arbitrary natural number. %K Second-order ordinary differential equation %K periodic boundary value problem %K positive solution %K existence %K multiplicity
二阶常微分方程 %K 周期边值问题 %K 正解 %K 存在性 %K 多解性. %K 非线性 %K 二阶常微分方程 %K 正周期解 %K DIFFERENTIAL %K EQUATIONS %K NONLINEAR %K CLASS %K PERIODIC %K SOLUTION %K 自然数 %K 存在性 %K 边值问题 %K 定理证明 %K 不动点 %K 转换技巧 %K 利用 %K 方法 %K 函数 %K Green %K 正解 %K 边界条件 %K 考察 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=9CA54475B43CF601B421ED6F0359C2EC&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=CA4FD0336C81A37A&sid=6E5881F2FFE5E466&eid=B28963F0DCA783C7&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=12