%0 Journal Article
%T k-CONTRACTIBLE EDGES IN k-CONNECTED GRAPHS NOT CONTAINING SOME SPECIFIED GRAPHS
不含某些子图的k连通图中的k可收缩边
%A YANG Yingqiu
%A SU Jianji
%A
杨迎球
%A 苏建基
%J 系统科学与数学
%D 2010
%I
%X Recently, Ando et al. proved that in a $k$- ($k\geq 5$ is an integer) connected graph $G$, if $\delta (G)\geq k+1$, and $G$ contains neither $K^{-}_{5}$, nor $5K_{1}+P_{3}$, then $G$ has a $k$ contractible edge. In this paper, the result is generalized, and it is proved that in a $k$- conneted graph $G$, if $\delta (G)\geq k+1$, and $G$ contains neither $K_{2}+(\lfloor\frac{k-1}{2}\rfloor K_{1}\cup P_{3})$, nor $tK_{1}+P_{3}$ (both $k$ and $t$ are integers, and $t\geq 3$) and if $k\geq 4t-7$, then $G$ has a $k$ contractible edge.
%K Fragments
%K contractible edge
%K k connected graph
断片
%K 可收缩边
%K $k$连通图.
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=7033D55938256810961EB42C6BBC7348&yid=140ECF96957D60B2&vid=340AC2BF8E7AB4FD&iid=DF92D298D3FF1E6E&sid=55434AEC30CBAE6B&eid=635968EA203846B7&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=7