%0 Journal Article
%T The Term Orderings Which are Homogeneously Compatible with Composition
具有与多项式复合齐次相容的项序
%A LIU Jinwang
%A LI Dongmei
%A FU Xiaoling
%A
刘金旺
%A 李冬梅
%A 傅晓玲
%J 系统科学与数学
%D 2008
%I
%X Let Kx_1,x_2,...,x_n] e the polynomial ring over a field K in variables x_1,x_2,...,n. Let \Theta=(\theta_1,\theta_2,...\theta_n) be a list of n homogeneous polynomials in Kx_1,x_2,..., x_n]. Polynomial composition, denoted by \Theta, is the operation of replacing x_i by a polynomial by \theta_i. We say that composition \Theta is homogeneouly compatible with the term ordering > if for all terms p and q with p>q, deg p=deg q implies that p\circ lt(\Theta)> q \circ lt(\Theta) .It is very difficult to test the compatibility. At the end of the paper, a procedure for testing the compatibility is given.
%K Homogeneous polynomial
%K polynomial composition
%K Grobner basis
齐次多项式
%K 多项式复合
%K Gr(o)bner基
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=054B2A22DE01857F3872543700648DBC&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=5D311CA918CA9A03&sid=27A5865B8C0B85C3&eid=29C36F017AD88B64&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=13