%0 Journal Article %T Iterative Approximation with Errors of Common Zero Points for a Finite Family of Accretive Operators in Banach Space
Banach空间中有限个增生算子公共零点的带误差项的迭代逼近 %A WEI Li %A ZHOU Haiyun %A
魏利 %A 周海云 %J 系统科学与数学 %D 2008 %I %X Let E be a real uniformly convex Banach space which satisfies Opial's condition or the norm of which is Frechet differentiable. For $i = 1,2,\cdots,k,$ let $A_i: E \rightarrow 2^E$ be accretive operators satisfying the range condition and $\bigcap\limits_{i=1}^{k}A^{-1}_{i}0 \neq \emptyset$. Let $C \subset E$ be a nonempty closed convex set and satisfy that $\overline{D(A_i)}\subset C \subset \bigcap\limits_{r>0}R(I+rA_i),$ for $ i =1,2,\cdots, k.$ A new iterative algorithm with errors is introduced and proved to be weakly convergent to common zero points of accretive operators $\{A_i\}_{i=1}^k$. %K Retraction mapping %K accretive operator %K uniformly convex Banach space %K Opial's condition
保核收缩映射 %K 增生算子 %K 一致凸Banach空间 %K Opial条件 %K Banach %K 空间 %K 有限 %K 增生算子 %K 公共零点 %K 带误差项 %K 迭代逼近 %K BANACH %K SPACE %K OPERATORS %K ACCRETIVE %K FAMILY %K FINITE %K ZERO %K COMMON %K ERRORS %K APPROXIMATION %K 弱收敛 %K 迭代序列 %K 迭代算法 %K 闭凸子集 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=63386F43BB5B445999F1FFD0639FF0F7&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=B31275AF3241DB2D&sid=D02611D1F8166C9A&eid=80BBC722D530DB8D&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=1&reference_num=9