%0 Journal Article %T Global Bifurcation of Positive Steady-State Solutions for a Classof Predator-Prey Model
一类捕食——食饵模型正平衡解的整体分歧 %A Zhang Hanjiang %A Li Yanling %A
张汉姜 %A 李艳玲 %J 系统科学与数学 %D 2007 %I %X In this paper the structure of a predator-prey model with modified Leslie-Gower and Holling-Type II schemes is investigated. By use of the theorems of local bifurcation and global bifurcation theory, we get the ralationship between the existence of positive solutions for the system and bifurcation parameter $b$-the birth-rate of predator $v$, that is, the system has coexistence positive solutions when $b$ is in a proper range. %K Predator-prey model %K principal eigenvalue %K local bifurcation %K global bifurcation
捕食-食饵模型 %K 主特征值 %K 局部分歧 %K 整体分歧. %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=892D45E4180D2FB7F47FDCFD0FDC6A1F&yid=A732AF04DDA03BB3&vid=DB817633AA4F79B9&iid=94C357A881DFC066&sid=4198A31627C9B2A6&eid=FE6645F2371CA43C&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=6