%0 Journal Article
%T LOGARITHMIC LIKELIHOOD RATIO AND A CLASS OF STRONG LAWS FOR THE SEQUENCE OF INTEGER-VALUED RANDOM VARIABLES
对数似然比与整值随机变量序列的一类强律
%A Liu Wen
%A Liu Zikuan
%A
刘文
%J 系统科学与数学
%D 1997
%I
%X In this paper, the notion of logarithmic likelihood ratio, as a measure of the deviation of a sequence of integer-valued random variables from an independent random sequence with geometric distribution, is introduced. By restricting the logarithmic likelihood ratio, a certain subset of the sample space is given, and on this subset, a class of strong laws, represented by inequalities, are obtained. These strong laws contain some limit properties of the sequence of integer-valued random variables, concerning relative entropy density and the entropy function of geometric distribution.
%K Strong law
%K entropy
%K relative entropy density
%K logarithmic likelihood ratio
%K geometric distribution
强律
%K 熵
%K 相对熵密度
%K 似然比
%K 对数似然比
%K 几何分布
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=160D534830AEEAFCBA38F4FC83C2ED8D&yid=5370399DC954B911&vid=BCA2697F357F2001&iid=E158A972A605785F&sid=EC34D52BE81085CE&eid=892C6E385D640C1E&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=2&reference_num=0