%0 Journal Article %T LOGARITHMIC LIKELIHOOD RATIO AND A CLASS OF STRONG LAWS FOR THE SEQUENCE OF INTEGER-VALUED RANDOM VARIABLES
对数似然比与整值随机变量序列的一类强律 %A Liu Wen %A Liu Zikuan %A
刘文 %J 系统科学与数学 %D 1997 %I %X In this paper, the notion of logarithmic likelihood ratio, as a measure of the deviation of a sequence of integer-valued random variables from an independent random sequence with geometric distribution, is introduced. By restricting the logarithmic likelihood ratio, a certain subset of the sample space is given, and on this subset, a class of strong laws, represented by inequalities, are obtained. These strong laws contain some limit properties of the sequence of integer-valued random variables, concerning relative entropy density and the entropy function of geometric distribution. %K Strong law %K entropy %K relative entropy density %K logarithmic likelihood ratio %K geometric distribution
强律 %K 熵 %K 相对熵密度 %K 似然比 %K 对数似然比 %K 几何分布 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=160D534830AEEAFCBA38F4FC83C2ED8D&yid=5370399DC954B911&vid=BCA2697F357F2001&iid=E158A972A605785F&sid=EC34D52BE81085CE&eid=892C6E385D640C1E&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=2&reference_num=0