%0 Journal Article %T Graphs on Which a Group of Prime Power Order with a Cyclic MaximalSubgroup Acts Edge-Transitively (II)
有循环极大子群的素数幂阶群的作用是边传递的图(II) %A CHEN Shangdi %A SHI Xinhua %A
陈尚弟 %A 石新华 %J 系统科学与数学 %D 2008 %I %X Let ${\it \Gamma}$ be a finite simple undirected graph with no isolated vertices, $G$ is a subgroup of Aut$({\it \Gamma})$. The graph ${\it \Gamma}$ is said to be $G$-edge transitive if $G$ is transitive on the set of edges of ${\it \Gamma}$. We obtain a complete classification of $G$-edge transitive graphs, when $G$ is a group of prime-power order with a cyclic maximal subgroup. This extends Sander's conclusion. Then ${\it \Gamma}$ is $G$-edge-transitive if and only if ${\it \Gamma}$ is one of following graphs:1)\ $p^mK_{1,p^{n-1-m}}$, $0\leq m\leq n-1$;2)\ $p^mK_{1,p^{n-m}}$, $0\leq m\leq n$;3)\ $p^mK_{p,p^{n-m-1}}$, $0\leq m\leq n-2$;4)\ $p^{n-m}C_{p^m}$, $p^m\geq 3,\ m图 %K 自同构群 %K 边传递 %K 有循环 %K 极大子群 %K 数幂 %K 作用 %K 边传递图 %K MAXIMAL %K SUBGROUP %K CYCLIC %K ORDER %K POWER %K PRIME %K 自同构群 %K 素数 %K 结果 %K 完全分类 %K 边集合 %K 孤立点 %K 无向 %K 有限 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=6AB44A136541D96187E2E9F8273E2DF6&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=38B194292C032A66&sid=119B6C0AA09DE6B9&eid=7737D2F848706113&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=5