%0 Journal Article %T OPTIMAL MAXIMUM NORM ERROR ESTIMATES OF THE LOWEST-ORDER MIXED FINITE ELEMENT METHOD FOR LINEAR ELLIPTIC PROBLEMS
线性椭圆问题最低次混合有限元方法的最优最大模误差估计 %A Huan Zhen CHEN %A
陈焕祯 %J 系统科学与数学 %D 2001 %I %X In this paper a sufficient condition to construct the lowest-order mixed finite element space is proposed and a new interpolation operator is created. On the basis of these two results the optimal maximum norm error estimates for the mired finite element solution, the adjoint vector-function and its divergence of linear elliptic problems are proved. %K Linear elliptic problems %K the lowest-order mixed finite element method %K new interpolation operator %K optimal maximum norm estimate
线性椭圆问题,最低次混合元方法,插值算子,最优最大模估计 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=AC19FD62E33A401E&yid=14E7EF987E4155E6&vid=659D3B06EBF534A7&iid=0B39A22176CE99FB&sid=28F8B56DB6BEE30E&eid=B0EBA60720995721&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=11