%0 Journal Article %T Asymptotical Behavior for a Second Order Linear Ordinary DifferentialEquation with Impulses
一类二阶线性脉冲微分方程解的渐近性态 %A Tian Yanling %A Weng Peixuan %A
田艳玲 %A 翁佩萱 %J 系统科学与数学 %D 2006 %I %X The structure and asymptotical behavior of solutions for a secondorder linear ordinary differential equation with impulses$$\left(r(t)u^{\prime}\right)^{\prime}=\sum\limits_{n=1}^{\infty}a_n\delta\left(t-t_n\right)u(t)$$are investigated, where $\delta (t)$ is the Dirac $\delta$-function, and $0\leqt_00$ for $n \in \mbox{\boldmath{$N$}}$, and $r(t)>0$ is a continuous function on$t_0,+\infty)$ %K Linear ordinary differential equation with impulses %K solutions %K asymptotical behaviors
线性脉冲微分方程 %K 解 %K 渐近性态 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=0C75AE436485902F&yid=37904DC365DD7266&vid=96C778EE049EE47D&iid=CA4FD0336C81A37A&sid=A7CAB6C8BFC95DA4&eid=61477358EA613BC6&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=8