%0 Journal Article %T 可分Banach空间上的局部Lipschitz函数的可微性 %A 史树中 %J 系统科学与数学 %D 1983 %I %X 一直到最近,有不少人认为,对于可分Hilbert空间,存在处处Gteaux可微、但处处Fréchet不可微的Lipschitz函数。为此,人们还构造了好几个“反例”;但遗憾的是,这些“反例”都是错的。最近,Preiss又构造了一个新的反例;这是一个ι~2上的Lipschitz函数,处处Gteaux可微,但仅在ι~2的一个残集上不Fréchet可微。 本文将对其对偶强可分的Banach空间(从而包括所有可分Hilbert空间)提出局部Lipschitz函数的两种殆可微性之间的肯定联系。由于有了Preiss的反例,由殆Gteaux可微是得不到殆Fréchet可微的;但是我们指出,如果对Gteaux微分▽f“略加一点连续性”,仍能得到殆Fréchet可微性。 我们证明下列定理: 定理.设E为可分Banach空间。那么,下列陈述是等价的: ⅰ) E的对偶E′强可分; ⅱ) 任何E的开集Ω上的局部Lipschitz函数f,只要它满足: a) f的Gteaux可微点集G是Ω的残集; b) Gteaux微分▽f:G→E′对于E′的w~*-拓扑连续; 必定也在Ω上殆Fréchet可微. 为了证明这个定理,我们需要Asplund空间、弱Asplund空间和广义梯度的概念。 根据Preiss的反例,我们不能去掉定理中的条件b)。同时,我们也不能把条件a)代替为 a′) f在Ω的残集G上Gteaux可微; 这是因为Lebourg已经证明:可分Banach空间上的局部Lipschitz函数殆Gteaux %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=BF9695CE6851E5A0DE3DC1608091C2BD&yid=A7F20A391020FDEE&vid=38B194292C032A66&iid=0B39A22176CE99FB&sid=4BB057F167CF3A60&eid=EFD65B51496FB200&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=0