%0 Journal Article
%T Self-Adjointness Of Products Of The Limit-Point Sturm-Liouville Operators
极限点型 Sturm-Liouville 算子乘积的自伴性
%A Yang Chuanfu
%A
杨传富
%J 系统科学与数学
%D 2006
%I
%X For the differential expression $l(y)=-(py')'+qy, \ t\in a,\infty)$, under the assumption that $l^k\ (k=1,2,3)$ are limit-pointed, the author studies the self-adjointness of the product operator $L_2L_1$, which $L_i\ (i=1,2)$ are generated by $l(y)$, and obtains a necessary and sufficient condition for self-adjointness of $L_2L_1$. Also, a necessary and sufficient condition for the self-adjointness of $L_3L_2L_1$, which $L_i\ (i=1,2,3)$ are associated with $l(y)=-y'+qy, \ t\in a,\infty)$, is obtained.
%K Products of differential operators
%K limit-pointed differential expression
%K self-adjoint boundary conditions
微分算子乘积
%K 极限点型微分算式
%K 自伴边界条件
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=492DAE972C9BE84F&yid=37904DC365DD7266&vid=96C778EE049EE47D&iid=38B194292C032A66&sid=869B6F3117981EC4&eid=5F8BAECF36EB55E2&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=1&reference_num=11