%0 Journal Article
%T THE CONSTRUCTION OF INFINITE FAMILIES OF k-TIGHT OPTIMAL DOUBLE LOOP NETWORKS
任意k紧优双环网络无限族的构造
%A ZHOU Jianqin
%A WANG Wenjuan
%A
周建钦
%A 汪文娟
%J 系统科学与数学
%D 2010
%I
%X Based on the theory of $L$-shaped tile, Chinese remainder theorem and prime number theory, it is proved that infinite families of $k_0$-tight optimal double loop networks can be constructed when $A+z-2j\ne0$, $\{N(t)=3t^{2}+(2i-1)t+B$; $B=k_0^2-nk_0+m, t=f^2-if-nk_0+m$, $f=(2i-i^2+4B)p_1^2 p_2^2\cdotsp^2_{k_0^2}e+c$, where $i=1,3, e\ge0, m,n$ are integers\}. The number $N(t)$ of nodes can be a polynomial of degree 4 in $e$ or a polynomial of degree 2 in $e$ with integral coefficients containing a parameter.
%K Double loop networks
%K diameter
%K tight optimal
%K infinite family
%K prime number
双环网络
%K 直径
%K 紧优
%K 无限族
%K 素数.
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=3A51F16D515354FE3D62DFE2B63CC051&yid=140ECF96957D60B2&vid=340AC2BF8E7AB4FD&iid=0B39A22176CE99FB&sid=627456E7977439A4&eid=7ABC4505E3960D2B&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=9