%0 Journal Article %T An Algorithm for Sums of Squares of a Class of Positive Semi-Definite Polynomials
一类半正定多项式的配平方和算法 %A LI Yi %A
李轶 %J 系统科学与数学 %D 2008 %I %X Based on Newton polytope technology, by means of the relation of points in Newton polytope, an algorithm is presented for representing a class of positive semi-definite polynomials as sums of squares. It's is very effective for a class of sparse polynomials. This algorithm improves the efficiency of sums ofsquares of real polynomial and advances the Automated Production ofreadable proof of a class of algebraic inequalities. In addition, asufficient condition is derived to determine that a givenpolynomial cannot be represented as a sum of squares. %K Sums of squares %K Gram matrix method %K Newtonpolytope %K sparse polynomial %K Hilbert 17-th problem
平方和 %K Gram矩阵方法 %K 牛顿多胞型 %K 稀疏多项式 %K Hilbert17问题. %K 半正定 %K 稀疏多项式 %K 配平 %K 符号算法 %K POLYNOMIALS %K POSITIVE %K CLASS %K SQUARES %K 充分条件 %K 可读性 %K 代数不等式 %K 效率 %K 处理 %K 稀疏性 %K 结构 %K 自动 %K 程序 %K Maple %K PCAD %K 利用 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=18B86F791A1F10976AF04C63F4BC6C8D&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=E158A972A605785F&sid=D397660E39E3E461&eid=9B1D77939DDB4B89&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=13