%0 Journal Article
%T An Algorithm for Sums of Squares of a Class of Positive Semi-Definite Polynomials
一类半正定多项式的配平方和算法
%A LI Yi
%A
李轶
%J 系统科学与数学
%D 2008
%I
%X Based on Newton polytope technology, by means of the relation of points in Newton polytope, an algorithm is presented for representing a class of positive semi-definite polynomials as sums of squares. It's is very effective for a class of sparse polynomials. This algorithm improves the efficiency of sums ofsquares of real polynomial and advances the Automated Production ofreadable proof of a class of algebraic inequalities. In addition, asufficient condition is derived to determine that a givenpolynomial cannot be represented as a sum of squares.
%K Sums of squares
%K Gram matrix method
%K Newtonpolytope
%K sparse polynomial
%K Hilbert 17-th problem
平方和
%K Gram矩阵方法
%K 牛顿多胞型
%K 稀疏多项式
%K Hilbert17问题.
%K 半正定
%K 稀疏多项式
%K 配平
%K 符号算法
%K POLYNOMIALS
%K POSITIVE
%K CLASS
%K SQUARES
%K 充分条件
%K 可读性
%K 代数不等式
%K 效率
%K 处理
%K 稀疏性
%K 结构
%K 自动
%K 程序
%K Maple
%K PCAD
%K 利用
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=18B86F791A1F10976AF04C63F4BC6C8D&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=E158A972A605785F&sid=D397660E39E3E461&eid=9B1D77939DDB4B89&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=13