%0 Journal Article
%T Solution of Discontinuous Impulsive Integro-Differential Equations in Ordered Banach Spaces
序Banach空间不连续脉冲积分-微分方程初值问题的解
%A WANG Zenggui
%A LIU Lishan
%A
王增桂
%A 刘立山
%J 系统科学与数学
%D 2008
%I
%X In this paper, the initial value problem for first order discontinuous impulsive integro-differential equations in ordered Banach spaces is investigated. By establishing a new comparison theorem and using only an upper or lower solution, the unique solution for the first order impulsive integro-differential equations can be obtained. The error estimate of the iterative sequences of approximation solutions is given. The results generalize and improve the corresponding results in some recent well-known papers.
%K Ordered Banach spaces
%K initial value problem
%K discontinuous impulsive integro-differential equations
%K unique solutions
序Banach空间
%K 初值问题
%K 不连续脉冲积分-微分方程
%K 唯一解
%K Banach
%K 空间
%K 连续
%K 脉冲积分
%K 微分方程
%K 初值问题
%K ORDERED
%K BANACH
%K SPACES
%K EQUATIONS
%K IMPULSIVE
%K DISCONTINUOUS
%K 改进
%K 误差估计
%K 迭代序列
%K 存在性定理
%K 唯一解
%K 假设
%K 控制条件
%K 结果
%K 文献
%K 相关
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=AC68DAB40D8ADAF1D40B0C9ACCE52AB7&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=0B39A22176CE99FB&sid=2BA123C6EB9D54C2&eid=334E2BB8B9A55ABB&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=9