%0 Journal Article %T Solution of Discontinuous Impulsive Integro-Differential Equations in Ordered Banach Spaces
序Banach空间不连续脉冲积分-微分方程初值问题的解 %A WANG Zenggui %A LIU Lishan %A
王增桂 %A 刘立山 %J 系统科学与数学 %D 2008 %I %X In this paper, the initial value problem for first order discontinuous impulsive integro-differential equations in ordered Banach spaces is investigated. By establishing a new comparison theorem and using only an upper or lower solution, the unique solution for the first order impulsive integro-differential equations can be obtained. The error estimate of the iterative sequences of approximation solutions is given. The results generalize and improve the corresponding results in some recent well-known papers. %K Ordered Banach spaces %K initial value problem %K discontinuous impulsive integro-differential equations %K unique solutions
序Banach空间 %K 初值问题 %K 不连续脉冲积分-微分方程 %K 唯一解 %K Banach %K 空间 %K 连续 %K 脉冲积分 %K 微分方程 %K 初值问题 %K ORDERED %K BANACH %K SPACES %K EQUATIONS %K IMPULSIVE %K DISCONTINUOUS %K 改进 %K 误差估计 %K 迭代序列 %K 存在性定理 %K 唯一解 %K 假设 %K 控制条件 %K 结果 %K 文献 %K 相关 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=AC68DAB40D8ADAF1D40B0C9ACCE52AB7&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=0B39A22176CE99FB&sid=2BA123C6EB9D54C2&eid=334E2BB8B9A55ABB&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=9