%0 Journal Article %T THE THREE-PARAMETER UNFOLDING OF A KIND OF PLANAR POLYCYCLES WITH A SADDLE-NODE AND A SADDLE OF ZERO SADDLE VALUE
平面上含鞍结点与中心型鞍点的余维3环的三参数开折 %A Li Qin ZHAO %A
赵丽琴 %J 系统科学与数学 %D 1999 %I %X In this paper we investigate the bifurcation diagrams of the typical threeparameter deformations of a kind of planar polycycles containing a saddle-node of multiplicity two and a hyperbolic saddle with hyperbolicity ratio equal to one. We prove that at most three limit cycles will be generated from this kind of polycycles and the cyclicity is three under some generic conditions. As an application, we prove that the cyclicity of the graph(I192) given in 4] is one. %K Polycycle %K cyclicity %K finitely smooth normal form %K bifurcation %K displacement function
环 %K 环性 %K 有限光滑正规形 %K 分支 %K 后继函数 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=BD414E1AB4252D70&yid=B914830F5B1D1078&vid=2A8D03AD8076A2E3&iid=0B39A22176CE99FB&sid=E22B6B8FE86DD8F9&eid=EB552E4CFC85690B&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=0