%0 Journal Article
%T $H^1$-Galerkin Mixed Finite Element Method For The Sobolev Equation
Sobolev 方程的$H^1$-Galerkin混合有限元方法
%A Guo Ling
%A Chen Huanzhen
%A
郭玲
%A 陈焕贞
%J 系统科学与数学
%D 2006
%I
%X In this paper, an $H^1$-Galerkin mixed finite element method is proposed to simulate the Sobolev equation. The problem is considered in $n$-dimentional($n\leq 3$) space, respectively. The unique existence of the semi-discrete and a fully discrete $H^1$-Galerkin mixed finite element solutions is proved, and optimal error estimates are also established. In particular, our method can simultaneously approximate the scalar unknown and the vector flux effectively, without requiring the LBB consistency condition. Finally, numerical results are provided to illustrate the efficiency of our method.
%K H1-Galerkin mixed finite element method
%K Sobolev equation
%K optimal error estimates
H1-Galerkin混合有限元方法
%K Sobolev方程
%K 最优误差估计
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=0460583059CEF03E&yid=37904DC365DD7266&vid=96C778EE049EE47D&iid=38B194292C032A66&sid=DFEE4E8C33C95CEF&eid=AA5FB09E1F81059E&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=1&reference_num=10