%0 Journal Article %T Hausdorff Measure for the Set of $m$-Adic Numbers without Neighboring Zeroes
限制零的m进制数集之Hausdorff测度 %A ZHONG Ting %A ZHANG Qingqing %A TANG Liang %A
钟婷 %A 张菁菁 %A 汤亮 %J 系统科学与数学 %D 2008 %I %X For any integer $m\geq2$, let$F_m=\big\{x\in0,1): \{m^kx\}\geq \frac{1}{m^2},k\in N\big\}$,where $\{m^kx\}$ is the fractional part of $m^kx$. This paper gives the Hausdorff measure of $F_m$:\,$H^s(F_m)=(\frac{m^2-2}{m^2-1})^s$, where $s=\log_m\frac{m-1+\sqrt{(m-1)^2+4(m-1)}}{2}$ is the Hausdorff dimension of $F_m$. %K m-adic %K sequence of no double zeroes linked %K mass distribution %K Hausdorff dimension %K Hausdorff measure
m进制数 %K 零不相邻序列 %K 质量分布 %K Hausdorff维数 %K Hausdorff测度 %K 进制 %K 数集 %K Hausdorff %K 测度 %K NUMBERS %K 维数 %K 整数表示 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=5DD962E1635F62E5C1825ECA84CAEB24&yid=67289AFF6305E306&vid=D3E34374A0D77D7F&iid=94C357A881DFC066&sid=A726E84831FE609B&eid=1918ADDC93A85779&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=4