%0 Journal Article
%T MOORE-PENROSE SPECTRUMS OF 2×2 UPPER TRIANGULAR OPERATOR MATRICES
2×2阶上三角型算子矩阵的Moore-Penrose谱
%A HAI Guojun
%A Alatancang
%A
海国君
%A 阿拉坦仓
%J 系统科学与数学
%D 2009
%I
%X Let $H_{1}$ and $H_{2}$ be infinite dimensional separable Hilbertspaces. Denote by $M_{C}$ the 2$\times$2 upper triangularoperator matrix acting on $H_{1}\oplus H_{2}$ of the form $\left(\begin{array}{cc} A & C \\ 0 & B \\\end{array}\right)$. For given operators $A\in{\mathcal{B}}(H_{1})$ and $B\in{\mathcal{B}}(H_{2})$, the sets $\bigcap\limits_{C\in{\mathcal{B}}(H_{2},H_{1})}\!\!\!\sigma_{M}(M_{C})$ and$\bigcup\limits_{C\in{\mathcal{B}}(H_{2},H_{1})}\!\!\!\sigma_{M}(M_{C})$ are characterized,where $\sigma_{M}(\cdot)$ denotes the Moore-Penrose spectrum.
%K 2*2 upper triangular operator matrices
%K Moore-Penrose invertible
%K Moore-Penrose spectrum
2*2阶上三角型算子矩阵
%K Moore-Penrose可逆
%K Moore-Penrose谱.
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=25F9F70D0EC2B9E4E909D69324B62358&yid=DE12191FBD62783C&vid=771469D9D58C34FF&iid=DF92D298D3FF1E6E&sid=CFC2B32D03D9F610&eid=714E16F7CF56F343&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=1&reference_num=10